Trade-Off between Bile Resistance and Nutritional Competence Drives Escherichia coli Diversification in the Mouse Gut
نویسندگان
چکیده
Bacterial diversification is often observed, but underlying mechanisms are difficult to disentangle and remain generally unknown. Moreover, controlled diversification experiments in ecologically relevant environments are lacking. We studied bacterial diversification in the mammalian gut, one of the most complex bacterial environments, where usually hundreds of species and thousands of bacterial strains stably coexist. Herein we show rapid genetic diversification of an Escherichia coli strain upon colonisation of previously germ-free mice. In addition to the previously described mutations in the EnvZ/OmpR operon, we describe the rapid and systematic selection of mutations in the flagellar flhDC operon and in malT, the transcriptional activator of the maltose regulon. Moreover, within each mouse, the three mutant types coexisted at different levels after one month of colonisation. By combining in vivo studies and determination of the fitness advantages of the selected mutations in controlled in vitro experiments, we provide evidence that the selective forces that drive E. coli diversification in the mouse gut are the presence of bile salts and competition for nutrients. Altogether our results indicate that a trade-off between stress resistance and nutritional competence generates sympatric diversification of the gut microbiota. These results illustrate how experimental evolution in natural environments enables identification of both the selective pressures that organisms face in their natural environment and the diversification mechanisms.
منابع مشابه
Molecular and Evolutionary Bases of Within-Patient Genotypic and Phenotypic Diversity in Escherichia coli Extraintestinal Infections
Although polymicrobial infections, caused by combinations of viruses, bacteria, fungi and parasites, are being recognised with increasing frequency, little is known about the occurrence of within-species diversity in bacterial infections and the molecular and evolutionary bases of this diversity. We used multiple approaches to study the genomic and phenotypic diversity among 226 Escherichia col...
متن کاملA regulatory trade-off as a source of strain variation in the species Escherichia coli.
There are few existing indications that strain variation in prokaryotic gene regulation is common or has evolutionary advantage. In this study, we report on isolates of Escherichia coli with distinct ratios of sigma factors (RpoD, sigmaD, or sigma70 and RpoS or sigmaS) that affect transcription initiated by RNA polymerase. Both laboratory E. coli K-12 lineages and nondomesticated isolates exhib...
متن کاملMolecular characterization and antibiotic resistance of enterotoxigenic and entero-aggregative Escherichia coli isolated from raw milk and unpasteurized cheeses
The aim of this study was to determine the occurrence of enterotoxigenic and enteroaggregative Escherichia coli strains and antibiotic resistance of the isolates in raw milk and unpasteurized cheese. Out of 200 samples of raw milk and 50 samples of unpasteurized cheeses, 96 and 24 strains of E. coli were isolated, respectively. Polymerase chain reaction (PCR) was used to detec...
متن کاملInvestigating the number of Lactobaccilus, Escherichia coli and Prevotella in fecal microbiota of adenomatous polyposis and colorectal cancer patients
Background: Colorectal cancer is the second most common cancer in the world which is mainly caused by epigenetic and environmental factors. Among these epigenetic factors, gut microbiota is an important one. Although it has not been proved a unique group of bacteria correlated with colorectal cancer, these findings have generally demonstrated differences between healthy and disease gut microbio...
متن کاملHow Porin Heterogeneity and Trade-Offs Affect the Antibiotic Susceptibility of Gram-Negative Bacteria
Variations in porin proteins are common in Gram-negative pathogens. Altered or absent porins reduce access of polar antibiotics across the outer membrane and can thus contribute to antibiotic resistance. Reduced permeability has a cost however, in lowering access to nutrients. This trade-off between permeability and nutritional competence is the source of considerable natural variation in porin...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره 7 شماره
صفحات -
تاریخ انتشار 2011